A REVIEW ON ACRIDINE, XANTHENE AND ITS DERIVATIVES: SYNTHESIS, PHYSICAL AND PHARMACOLOGICAL PROPERTIES

Authors

  • Herole RA Department of Pharmaceutical Chemistry, Institute of Pharmacy, Shri Jagdish Prasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu, Rajasthan-333001
  • Rakesh Kumar Jat Department of Pharmaceutical Chemistry, Institute of Pharmacy, Shri Jagdish Prasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu, Rajasthan-333001
  • Rajendra D Dighe Department of Pharmaceutical Chemistry, Institute of Pharmacy, Shri Jagdish Prasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu, Rajasthan-333001

DOI:

https://doi.org/10.1234/tjpls.v9i6.108

Keywords:

Acridines, Xanthenes, Benzoacridine, Benzoxanthene, Docking, Alkaloids, Anticancer, Antibacterial

Abstract

Acridine derivatives are one of the oldest category of bioactive, globally used as anticancer, antiprotozoal agents and antibacterial. The class of acridine derivatives constitutes an interesting group of nitrogen-containing tricyclic compounds that caught the scientific group’s attention, mainly due to its wide range of pharmaceutical properties. The synthesis of new polycyclic acridine skeletons fused with a five or six-membered rings, have been extensively studied because they play important roles in some DNA-intercalating anticancer drugs. Benzoacridine derivatives have been recently synthesized by a number of methods via one-pot multi-component condensation reactions of dimedone, naphthylamines, and aldehydes in different conditions, for example, using triethylbenzylammonium chloride/H2O, ionic liquid, under microwave irradiation, or ultrasound irradiation. A xanthene is found to most multifaceted heterocyclic ring having as it is having variety of activity and utilization. Xanthine derivatives are medications used to treat bronchospasm caused by lung conditions such as asthma. Xanthenes dyes shows antiviral activity, anti-tubercular, anticancer, anti-microbial, malonate derivatives was having anti-spasmodic activity. Benzoxanthenes are tetracyclic dibenzopyrans with diverse biological and therapeutic properties such as antibacterial, antitumor, anti-inflammatory, antiviral, pesticidal activities, and antimalarial.

Downloads

Download data is not yet available.

References

Gensicka-Kowalewska, M.; Cholewiński, G.; Dzierzbicka, K. Recent Developments in the Synthesis and Biological Activity of Acridine/Acridone Analogues. RSC Adv. 2017, 7, 15776–15804.

Sabolova, D.; Kristian, P.; Kozurkova, M. Proflavine/Acriflavine Derivatives with Versatile Biological Activities. J. Appl. Toxicol. 2020, 40, 64–71.

Ji Ram, V.; Sethi, A.; Nath, M.; Pratap, R. Six-Membered Heterocycles. In The Chemistry of Heterocycles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 3–391. ISBN 9780128192108.

Borowski, A. Preparation of Acridine Derivatives Bearing Saturated Rings. Curr. Org. Chem. 2016, 21, 86–93.

Guo QL, Su HF, Wang N, Liao SR, Lu YT, Ou TM, et al. Synthesis and evaluation of 7-substituted-5, 6-dihydrobenzo [c] acridine derivatives as new c-KIT promoter G-quadruplex binding ligands. Eur J Med Chem 2017; 130:458-71.

Songbuer, Li Minghui, Imerhasan Mukhtar. Synthesis and Application of Acridine Derivatives[J]. Chin. J. Org. Chem., 2018, 38(3): 594-611.

Gräbe, C.; Caro, H. "Ueber Acridin". Berichte der Deutschen Chemischen Gesellschaft (in German). 1970; 3 (2): 746–747.

Maier W, Baumert A, Schumann B, Furukawa H, Groger D. "Synthesis of 1,3-dihydroxy-N-methylacridone and its conversion to rutacridone by cell-free extracts of Ruta-graveolens cell cultures". Phytochemistry. 1993; 32 (3): 691–698.

Joseph R. Lakowicz. Principles of Fluorescence Spectroscopy 3rd edition. Springer (2006). ISBN 978-0387-31278-1. Chapter 7. page 260.

Scott, L.T. Polycyclic aromatic hydrocarbon bowls, baskets, balls, and tubes: Challenging targets for chemical synthesis. Polycyclic. Aromat. Comp. 2010, 30, 247–259.

Liu, B.; Liu, J.; Li, H.; Bhola, R.; Jackson, E.A.; Scott, L.T.; Page, A.; Irle, S.; Morokuma, K.; Zhou, C. Nearly Exclusive Growth of Small Diameter Semiconducting Single-Wall Carbon Nanotubes from Organic Chemistry Synthetic End-Cap Molecules. Nano Lett. 2015, 15, 586–595.

Nuñez YO, Salabarria IS, Collado IG, Hernández-Galán R. Screening Study of Potential Lead Compounds for Natural Product Based Fungicides from Juniperus lucayana. Nat Product Commun. 2008;3(4):1934578X0800300401.

Salih AM, Al-Qurainy F, Khan S, Tarroum M, Nadeem M, Shaikhaldein HO, Alabdallah NM, Alansi S, Alshameri A.BMC Plant Biol. 2021 Apr 21;21(1):192.

Cain B.F., Atwell G.J., Denny W.A. Potential antitumor agents 17. 9-Anilino-10-Methylacridinium Salts. J. Med. Chem. 1976;19:772–777.

Lang X., Luan X., Gao C., Jiang Y. Recent Progress of Acridine Derivatives with Antitumor Activity. Prog. Chem. 2012; 24:1497–1505.

A. Vieira, I. R. Brandao, W. O. Valenca, C. A. de Simone, B. C. Cavalcanti, C. Pessoa, T. R. Carneiro, A. L. Braga, E. N. da Silva, Eur. J. Med. Chem. 2015, 101, 254.

Murugesan, R.M. Gengan, A. Krishnan, Sulfonic acid functionalized boron nitride nano materials as a microwave-assisted efficient and highly biological active one-pot synthesis of piperazinyl-quinolinyl fused Benzo[c]acridine derivatives, Materials Chemistry and Physics (2017).

C. Li et al. Synthesis and electroluminescent properties of Ir complexes with benzo[c]acridine or 5,6-dihydro-benzo[c]acridine ligands: Thin solid films (2008).

Khandelwal S., Tailor Y.K., Rushell E., Kumar M. Green Approaches in Medicinal Chemistry for Sustainable Drug Design. Elsevier; Amsterdam, The Netherlands: Use of sustainable organic transformations in the construction of heterocyclic scaffolds; 2020 pp. 245–352.

Maia M., Resende D.I.S.P., Durães F., Pinto M.M.M., Sousa E. Xanthenes in Medicinal Chemistry—Synthetic Strategies and Biological Activities. Eur. J. Med. Chem. 2021;210:113085.

Sen R.N., Sarkar N.N. The Condensation of Primary Alcohols with Resorcinol and o-hydroxy aromatic compounds. J. Am. Chem. Soc. 1925; 47:1079–1091.

Sadeghpour M., Olyaei A., Adl A. Recent Progress on the Synthesis of Henna-Based Dibenzoxanthenes. New J. Chem. 2021; 45:13669–13691.

Burange A.S., Gadam K.G., Tugaonkar P.S., Thakur S.D., Soni R.K., Khan R.R., Tai M.S., Gopinath C.S. Green Synthesis of Xanthene and Acridine-Based Heterocycles of Pharmaceutical Importance: A Review. Environ. Chem. Lett. 2021; 19:3283–3314.

Colas K., Doloczki S., Posada Urrutia M., Dyrager C. Prevalent Bioimaging Scaffolds: Synthesis, Photophysical Properties and Applications. Eur. J. Org. Chem. 2021; 2021:2133–2144.

Sato S., Nojiri T., Okuyama N., Maeda K., Kirigane A. Synthesis and evaluation of a new water-soluble fluorescent red dye, xanthene bis-C-glycoside. J. Heterocycl. Chem. 2020; 57:3342–3349.

Rajapaksha I., Chang H., Xiong Y., Marder S., Gwaltney S.R., Scott C.N. New Design Strategy Toward NIR I Xanthene-Based Dyes. J. Org. Chem. 2020; 85:12108–12116.

Mohamed M.B.I., Aysha T.S., Elmorsi T.M., El-Sedik M., Omara S.T., Shaban E., Kandil O.M., Bedair A.H. Colorimetric Chemosensor and Turn on Fluorescence Probe for PH Monitoring Based on Xanthene Dye Derivatives and Its Bioimaging of Living Escherichia Coli Bacteria. J. Fluoresc. 2020; 30:601–612.

Coelho A., Fraichard S., Le Goff G., Faure P., Artur Y., Ferveur J.-F. Cytochrome P450-dependent metabolism of caffeine in Drosophila melanogaster. PLoS One. 2015;10

Ogawa K., Takagi K., Satake T. Mechanism of xanthine-induced relaxation of Guinea-pig isolated trachealis muscle. Br. J. Pharmacol. 1989;97:542–546

Meskini N., Némoz G., Okyayuz-Baklouti I., Lagarde M., Prigent A.-F. Phosphodiesterase inhibitory profile of some related xanthine derivatives pharmacologically active on the peripheral microcirculation. Biochem. Pharmacol. 1994; 47:781–788.

Van der Walt M.M., Terre'Blanche G. 1,3,7-Triethyl-substituted xanthines—possess nanomolar affinity for the adenosine A1 receptor. Bioorg. Med. Chem. 2015; 23:6641–6649.

Gessner, Thomas; Mayer, Udo. "Triarylmethane and Diarylmethane Dyes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH 2000.

Yuan B, Shao M, Lu S, Wang B Source profles of volatile organic compounds associated with solvent use in Beijing, China. Atmo Environ 2010; 44:1919–1926.

Khazaei A, Moosavi-Zare A, Mohammadi Z, Zare A, Khakyzadeha V, Darvishid G Efcient preparation of 9-aryl-1,8-dioxooctahydroxanthenes catalyzed by nano-TiO2 with high recyclability. RSC Adv 2013; 3:1323–1326.

Kulkarni DG, Kulkarni MAV, Viswanath AK, Gopinath CS Template Free Synthesis of Mesoporous TiO2 with High Wall Thickness in Nanocrystalline Framework. J Nanosci Nanotech 2009; 9:371–377.

Tudu B, Nalajala N, Reddy KP, Saikia P, Gopinath CS. Electronic integration and thin flm aspects of Au–Pd/rGO/TiO2 for improved solar hydrogen generation. ACS Appl Mater Interfaces 2019; 11:32869–32878.

Tudu B, Nalajala N, Saikia P, Gopinath CS. Cu–Ni bimetal integrated TiO2 thin flm for enhanced solar hydrogen generation. Solar RRL 2020; 4:1900557.

Sathish M, Viswanathan B, Viswanathan RP, Gopinath CS. Synthesis, characterization, electronic structure, and photocatalytic activity of nitrogen-doped TiO2 nanocatalyst. Chem Mater 2005; 17:6349–6353.

Chenlu Dai, Naili Luo, Shan Wang, Cunde Wang. Cesium-Carbonate-Mediated Benzalation of Substituted 2-Aryl-3-nitro-2H-chromenes with Substituted 4-Benzylidene-2-phenyloxazol-5(4H)-ones. Organic Letters 2019, 21 (8), 2828-2832.

Amol Milind Garkhedkar, Gopal Chandru Senadi, and Jeh-Jeng Wang. ZnBr2-Mediated Cascade Reaction of o-Alkoxy Alkynols: Synthesis of Indeno[1,2-c]chromenes. Organic Letters 2017, 19 (3) , 488-491.

Wei Chen, Xin-wen Peng, Lin-xin Zhong, Yuan Li, and Run-cang Sun. Lignosulfonic Acid: A Renewable and Effective Biomass-Based Catalyst for Multicomponent Reactions. ACS Sustainable Chemistry & Engineering 2015, 3 (7), 1366-1373.

Sandile B. Simelane, Henok H. Kinfe, Alfred Muller, and D. Bradley G. Williams. Aluminum Triflate Catalyzed Tandem Reactions of d-Galactal: Toward Chiral Benzopyrans, Chromenes, and Chromans. Organic Letters 2014, 16 (17), 4543-4545.

Hong-Juan Wang, Li-Ping Mo, and Zhan-Hui Zhang. Cerium Ammonium Nitrate-Catalyzed Multicomponent Reaction for Efficient Synthesis of Functionalized Tetrahydropyridines. ACS Combinatorial Science 2011, 13 (2), 181-185.

Atul Kumar, Suman Srivastava, Garima Gupta, Vinita Chaturvedi, Sudhir Sinha, and R. Srivastava. Natural Product Inspired Diversity Oriented Synthesis of Tetrahydroquinoline Scaffolds as Antitubercular Agent. ACS Combinatorial Science 2011, 13 (1) , 65-71.

Atul Kumar, Garima Gupta and Suman Srivastava. Diversity Oriented Synthesis of Pyrrolidines via Natural Carbohydrate Solid Acid Catalyst. Journal of Combinatorial Chemistry 2010, 12 (4), 458-462.

Vellaisamy Sridharan and J. Carlos Menéndez. Cerium (IV) Ammonium Nitrate as a Catalyst in Organic Synthesis. Chemical Reviews 2010, 110 (6), 3805-3849.

C. Liu, J. Pan,S. Li, Y. Zhao,L. Y. Wu, C. E. Berkman, A. R. Whorton,M.Xian,Angew.Chem.Int. Ed.2011,50, 10327–10329; Angew.Chem.2011,123,10511–10513.

Chohan, Z. H.; Youssoufi, M. H.; Ben, H. T.; Jarrahpour, A. Eur. J. Med. Chem. 2010, 45, 1189.

Belinda, L.; Luciano, V.; Mok, B. J.; Lee, C. C.; Fitzmaurice, R. J.; Caddick, S.; Fassati, A. Chem. Biol. Drug. Des. 2010, 75, 461.

Maren, T. H. Annu. Rev. Pharmacol. Toxicol. 1976, 16, 309.

Boechat, N.; Pinheiro, L. C. S.; Santos-Filho, O. A.; Silva, I. C.; Molecules. 2011, 16, 8083.

Koller, M.; Kurt, L.; Markus, S.; Ivan-Toma, V.; Joerg, K.; Yves, P. A.; David, A. C.; Henri, M.; Silvio, O.; David, O.; Stephan, U. Bioorg. Med. Chem. Lett. 2011, 21, 3358.

E. Boyd 3rd; Diabetes. 1988. 37. 847.

Supuran, C. T.; Scozzafava, A. Exp. Opin. Ther. Patents. 2000, 10, 575.Scozzafava, C. T.; A. Curr.

Med. Chem. Immunol. Endocr. Metabol. Agents. 2001, 37, 61.

Thornber, C. W. Chem. Soc. Rev.1979, 8, 563. 17.

Jiyoung, M.; Adnan, A. J.; Narra, S. D.; Yuan, L.; Erwin, G. V. M.; Mark, M. G. Bioorg. Med. Chem. 2012, 20, 4590.

Wang, W.; Ao, L.; Rayburn, E. R.; Xu, H.; Zhang, X.; Zhang, X.; Nag, S. A.; Wu, X.; Wang, M. H.; Wang, H.; Van Meir, E. G.; Zhang, R. PLoS One. 2012, 7, 44883.

Bikadi Z, Hazai E. Application of the PM-6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J Cheminf 2009: 1:1–16.

Halgren TA. Merck molecular force field I Basis, form, scope, parametrization, and performance of MMFF94. J Comp Chem 1998; 17:490–519.

Morris GM, Goodsell DS, Olson AJ. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comp Chem 1998; 19:1639–1662.

Solis FJ, Wets RJB. Minimization by random search techniques. Math Method Oper Res 1981: 6:19–30.

Published

27-12-2022

How to Cite

Herole RA, Rakesh Kumar Jat, and Rajendra D Dighe. “A REVIEW ON ACRIDINE, XANTHENE AND ITS DERIVATIVES: SYNTHESIS, PHYSICAL AND PHARMACOLOGICAL PROPERTIES”. Tropical Journal of Pharmaceutical and Life Sciences, vol. 9, no. 6, Dec. 2022, pp. 01-12, doi:10.1234/tjpls.v9i6.108.

Issue

Section

Review Article