A comprehensive review on blood brain delivery methods using nanotechnology

Authors

  • J Pavan Kumar School of Pharmacy, Raffes University, Neemrana, Raj-301705
  • Chennnu MM Prasada Rao School of Pharmacy, Raffes University, Neemrana, Raj-301705
  • Ranjan Kumar Singh School of Pharmacy, Raffes University, Neemrana, Raj-301705 https://orcid.org/0000-0002-5487-0381
  • Ajay Garg School of Pharmacy, Raffes University, Neemrana, Raj-301705
  • Tanniru Rajeswari School of Pharmacy, Raffes University, Neemrana, Raj-301705

DOI:

https://doi.org/10.61280/tjpls.v11i3.162

Keywords:

Nano-particle, Nano-medicine, Drug delivery polymer, Targeting, Liposome

Abstract

A limited amount of the administered medicine can reach the brain. As a result, a higher dose of the drug must be administered, which, as expected, causes several undesirable side effects. For the past few decades, researchers in a range of professions have been working to address this highly important and frequently lethal condition. Nanomedicine is a field of research that has achieved promising findings in recent years. Nanomedicine is the science that combines nanotechnology, chemistry, and medicine. Many various forms of nano-medicine-based drug-delivery systems are currently being investigated with the express goal of improving drug delivery to the brain. This overview compiles and briefly summarizes some of the most significant advances in this crusade. Inorganic nano-particle-based drug delivery systems, such as gold and magnetic nano-particles, are discussed, as are several organic nano-particulate systems. Polymeric micelles and dendrimers are briefly described as organic drug-delivery nano-systems, while solid polymeric nano-particles are thoroughly investigated.

Downloads

Download data is not yet available.

Author Biographies

J Pavan Kumar , School of Pharmacy, Raffes University, Neemrana, Raj-301705

Research Scholar

Chennnu MM Prasada Rao, School of Pharmacy, Raffes University, Neemrana, Raj-301705

Faculty School of Pharmacy

Ranjan Kumar Singh, School of Pharmacy, Raffes University, Neemrana, Raj-301705

Faculty School of Pharmacy

Ajay Garg, School of Pharmacy, Raffes University, Neemrana, Raj-301705

Faculty School of Pharmacy

Tanniru Rajeswari, School of Pharmacy, Raffes University, Neemrana, Raj-301705

Faculty School of Pharmacy

References

Agnieszka Z. Wilczewska1, Katarzyna Niemirowicz2, Karolina H. Markiewicz1, H. C. (2012). Nanoparticle drug delivery platform. Pharmacological Reports, 54(3), 1020–1037. https://doi.org/10.1080/15583720701454999

Ahlawat, J., Henriquez, G., & Narayan, M. (2018). Enhancing the delivery of chemotherapeutics: Role of biodegradable polymeric nanoparticles. Molecules, 23(9), 1–20. https://doi.org/10.3390/molecules23092157

Akbarzadeh, A., Rezaei-sadabady, R., Davaran, S., Joo, S. W., & Zarghami, N. (2013). Liposome : classification , preparation , and applications. Nanoscale Research Letter, 8(102), 1–9.

Ali, I. U., Chen, X., Imaging, M., Imaging, B., Institutes, N., & States, U. (2015). Penetrating the Blood À Brain Barrier : Delivery Vehicles. ACS Nano, 9(10), 9470–9474.

Ayub, A., & Wettig, S. (2022). An Overview of Nanotechnologies for Drug Delivery to the Brain. Pharmaceutics, 14(2). https://doi.org/10.3390/pharmaceutics14020224

Baek, S. K., Makkouk, A. R., Krasieva, T., Sun, C. H., Madsen, S. J., & Hirschberg, H. (2011). Photothermal treatment of glioma; An in vitro study of macrophage-mediated delivery of gold nanoshells. Journal of Neuro-Oncology, 104(2), 439–448. https://doi.org/10.1007/s11060-010-0511-3

Brioschi, A., Zenga, F., Zara, G. P., Gasco, M. R., Ducati, A., & Mauro, A. (2007). elp to improve the efficacy of pharmacologic treatments for brain tumors?Solid lipid nanoparticles: Could they h. Neurological Research, 29(3), 324–330. https://doi.org/10.1179/016164107X187017

Callender, S. P., Mathews, J. A., Kobernyk, K., & Wettig, S. D. (2017). Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. International Journal of Pharmaceutics, 526(1–2), 425–442. https://doi.org/10.1016/j.ijpharm.2017.05.005

De Giglio, E., Trapani, A., Cafagna, D., Sabbatini, L., & Cometa, S. (2011). Dopamine-loaded chitosan nanoparticles: Formulation and analytical characterization. Analytical and Bioanalytical Chemistry, 400(7), 1997–2002. https://doi.org/10.1007/s00216-011-4962-y

Domínguez, A., Suárez-Merino, B., & Goñi-De-Cerio, F. (2014). Nanoparticles and blood-brain barrier: The key to central nervous system diseases. Journal of Nanoscience and Nanotechnology, 14(1), 766–779. https://doi.org/10.1166/jnn.2014.9119

Grabrucker, A. M., Ruozi, B., Belletti, D., Pederzoli, F., Forni, F., Vandelli, M. A., & Tosi, G. (2016). Nanoparticle transport across the blood brain barrier. Tissue Barriers, 4(1). https://doi.org/10.1080/21688370.2016.1153568

Gurturka, Z. (2017). Maltodextrin modified liposome for drug delivery through blood- brain barrier‡ Zeynep. MedChemComm, 00. https://doi.org/10.1039/C7MD00045F

Hadjipanayis, C. G., Machaidze, R., Kaluzova, M., Wang, L., Schuette, A. J., Chen, H., Wu, X., & Mao, H. (2010). EGFRvIII antibody-conjugated iron oxide nanoparticles for magnetic resonance imaging-guided convection-enhanced delivery and targeted therapy of glioblastoma. Cancer Research, 70(15), 6303–6312. https://doi.org/10.1158/0008-5472.CAN-10-1022

I, J., Chen, F., Hu, C., He, L., Yan, K., Zhou, L., & Pan, W. (2008). Optimized preparation of in situ forming microparticles for the parenteral delivery of vinpocetine. Chemical and Pharmaceutical Bulletin, 56(6), 796–801. https://doi.org/10.1248/cpb.56.796

Jyoti Ahlawat. (2020). Nanocarriers as Potential Drug Delivery Candidates for Overcoming the Blood-Brain Barrier: Challenges and Possibilities. ACS Omega, 5(22), 12583–12595. https://doi.org/10.1021/acsomega.0c01592

Kale, S. N., & Deore, S. L. (2016). Emulsion micro emulsion and nano emulsion: A review. Systematic Reviews in Pharmacy, 8(1), 39–47. https://doi.org/10.5530/srp.2017.1.8

Kumar, J. P., Ismail, Y., Reddy, K. T. K., Panigrahy, U. P., Shanmugasundaram, P., & Babu, M. K. (2022). Paclitaxel Nanosponges’ Formula and in Vitro Evaluation. Journal of Pharmaceutical Negative Results, 13(7), 2733–2740. https://doi.org/10.47750/pnr.2022.13.S07.365

Lee, D., & Minko, T. (2021). Nanotherapeutics for nose-to-brain drug delivery: An approach to bypass the blood brain barrier. Pharmaceutics, 13(12). https://doi.org/10.3390/pharmaceutics13122049

Leiro, V., Duque Santos, S., Lopes, C. D. F., & Paula Pêgo, A. (2018). Dendrimers as Powerful Building Blocks in Central Nervous System Disease: Headed for Successful Nanomedicine. Advanced Functional Materials, 28(12). https://doi.org/10.1002/adfm.201700313

Lombardo, S. M., Schneider, M., Türeli, A. E., & Türeli, N. G. (2020). Key for crossing the BBB with nanoparticles: The rational design. Beilstein Journal of Nanotechnology, 11(866), 866–883. https://doi.org/10.3762/BJNANO.11.72

Monge-Fuentes, V., Biolchi Mayer, A., Lima, M. R., Geraldes, L. R., Zanotto, L. N., Moreira, K. G., Martins, O. P., Piva, H. L., Felipe, M. S. S., Amaral, A. C., Bocca, A. L., Tedesco, A. C., & Mortari, M. R. (2021). Dopamine-loaded nanoparticle systems circumvent the blood–brain barrier restoring motor function in mouse model for Parkinson’s Disease. Scientific Reports, 11(1), 1–16. https://doi.org/10.1038/s41598-021-94175-8

Moura, R. P., Martins, C., Pinto, S., Sousa, F., & Sarmento, B. (2019). Blood-brain barrier receptors and transporters: an insight on their function and how to exploit them through nanotechnology. Expert Opinion on Drug Delivery, 16(3), 271–285. https://doi.org/10.1080/17425247.2019.1583205

Patel, R. B., Patel, M. R., Bhatt, K. K., Patel, B. G., & Gaikwad, R. V. (2016). Microemulsion-based drug delivery system for transnasal delivery of Carbamazepine: Preliminary brain-targeting study. Drug Delivery, 23(1), 207–213. https://doi.org/10.3109/10717544.2014.908980

Qiao, R., Jia, Q., Hüwel, S., Xia, R., Liu, T., Gao, F., Galla, H. J., & Gao, M. (2012). Receptor-mediated delivery of magnetic nanoparticles across the blood-brain barrier. ACS Nano, 6(4), 3304–3310. https://doi.org/10.1021/nn300240p

ŞAHİN, A., TONBUL, H., ÇAPAN, Y., & SEKO, I. (2020). Brain-targeted nanoparticles to overcome the blood-brain barrier. Journal of Pharmaceutical Technolgy, 1(1), 26–40. https://doi.org/10.37662/jpt.2020.4

Sahoo, S. K., & Labhasetwar, V. (2003). Nanotech_approaches_to_drug_delivery_and plga. Research Focus, 8(24), 1112–1120.

Sakshi*, R. K. S. (2024). "Liposomes- an updated overview". International journal of pharma professional’s research, 15(1).

Sarkar, A., Fatima, I., Mohammad Sajid Jamal, Q., Sayeed, U., Kalim A. Khan, M., Akhtar, S., Amjad Kamal, M., Farooqui, A., & Haris Siddiqui, M. (2017). Nanoparticles as a Carrier System for Drug Delivery Across Blood Brain Barrier. Current Drug Metabolism, 18(2), 129–137. https://doi.org/10.2174/1389200218666170113125132

Tan, Q., Zhao, S., Xu, T., Wang, Q., Lan, M., Yan, L., & Chen, X. (2022). Getting drugs to the brain: advances and prospects of organic nanoparticle delivery systems for assisting drugs to cross the blood-brain barrier. Journal of Materials Chemistry B, 10(45), 9314–9333. https://doi.org/10.1039/d2tb01440h

Tian-Qi Li, Li-Wen Huang, and X. X. (2019). Nanomedicine in Brain Diseases: Principles and Application. In Nanomedicine in Brain Diseases: Principles and Application (Issue November). https://doi.org/10.1007/978-981-13-8731-9

Xu, W., Ling, P., & Zhang, T. (2013). Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs. Journal of Drug Delivery, 2013(1), 1–15. https://doi.org/10.1155/2013/340315

Zlokovic, B. V. (2013). Cerebrovascular Effects of Apolipoprotein E. CLINICAL IMPLICATIONS OF BASIC NEUROSCIENCE RESEARCH. https://doi.org/10.1001/jamaneurol.2013.2152

Published

27-06-2024

How to Cite

J Pavan Kumar, Chennnu MM Prasada Rao, Ranjan Kumar Singh, Ajay Garg, and Tanniru Rajeswari. “A Comprehensive Review on Blood Brain Delivery Methods Using Nanotechnology”. Tropical Journal of Pharmaceutical and Life Sciences, vol. 11, no. 3, June 2024, pp. 43-52, doi:10.61280/tjpls.v11i3.162.
Statistics
156 Views | Downloads

Issue

Section

Review Article