APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND ROBOTICS IN PHARMACEUTICAL SCIENCES: ADVANCING DRUG DISCOVERY, PERSONALIZED MEDICINE, AND PHARMACEUTICAL MANUFACTURING
Keywords:
Artificial Intelligence, Robotics, Drug Discovery, Personalized Medicine, Pharmaceutical ManufacturingAbstract
This paper reviews the major contributions made by artificial intelligence (AI) and robotics to pharmaceutical sciences, particularly drug discovery, personalized medicine, and pharmaceutical manufacturing. It demonstrates the speed and cost efficiency of finding therapeutic candidates using large chemical libraries and biological data generated by AI applications that accelerate this process over traditional techniques. Furthermore, AI predictive capabilities to predict the drug’s pharmacokinetic and pharmacodynamic profile help to minimize the risks of late-stage clinical trial failure and facilitate the process of developing drugs. In the personalized medicine arena, AI’s potential to learn from genetic, environmental, and lifestyle data enables the development of custom-tailored treatment plans to improve patients’ outcomes while mitigating negative side effects. These are enhanced by robotics to automate drug synthesis, ensure dosage consistency, and enhance patient safety. It is likely that AI will play a vital role in drug discovery in the future, and cutting-edge machine learning (ML) algorithms will help to dramatically speed up the identification of novel therapeutic targets while saving time and money by delaying or eliminating traditional discovery steps. Also, AI and robotics can be integrated into pharmaceutical manufacturing in order to optimize efficiency by continuously monitoring and optimizing the production processes, enhancing supply chain optimization, and ensuring quality assurance (QA). Overall, this review highlights the impact of AI and robotics in pharmaceutical sciences for creating a more effective and customized healthcare system, which will make patient care and treatment outcomes more efficient.
Downloads
References
Mottaghi-Dastjerdi, N., & Soltany-Rezaee-Rad, M. (2024). Advancements and Applications of Artificial Intelligence in Pharmaceutical Sciences: A Comprehensive review. IJ Pharmaceutical Research (IJPR), 23(1), e150510. https://doi.org/10.5812/ijpr-150510
Bharadwaj, S., Deepika, K., Kumar, A., Jaiswal, S., Miglani, S., Singh, D., Fartyal, P., Kumar, R., Singh, S., Singh, M. P., Gaidhane, A. M., Kumar, B., & Jha, V. (2024). Exploring the artificial intelligence and its impact in pharmaceutical sciences: Insights toward the horizons where technology meets tradition. Chemical Biology & Drug Design, 104(4), 1–23. https://doi.org/10.1111/cbdd.14639
Sahoo, D. K., Sarangi, R. R., Nayak, S. K., V., R., & Sayeed, M. (2024). Discovering New Horizons: A systematic review on artificial intelligence applications in drug discovery and development. International Journal of Pharmaceutical Quality Assurance, 15(3), 1151–1157. https://doi.org/10.25258/ijpqa.15.3.08
Lu, M., Yin, J., Zhu, Q., Lin, G., Mou, M., Liu, F., Pan, Z., You, N., Lian, X., Li, F., Zhang, H., Zheng, L., Zhang, W., Zhang, H., Shen, Z., Gu, Z., Li, H., & Zhu, F. (2023). Artificial Intelligence in Pharmaceutical Sciences. Engineering, 27, 37–69. https://doi.org/10.1016/j.eng.2023.01.014
Isani, A. I., Nagarbhadiya, A. D., & Tatewar, G. N. (2023). The concept of artificial intelligence in pharmaceutical industry. International Journal for Research Trends and Innovation, 8(4), 820–824. https://www.ijrti.org/papers/IJRTI2304136.pdf
Qi, C., & Lei, Y. (2022). Artificial intelligence applications in medical sciences: illustrations in pharmaceutical and medical imaging areas. Third International Conference on Computer Science and Communication Technology (ICCSCT 2022), 12506, 125063E. https://doi.org/10.1117/12.2661813
Duran, T., & Chaudhuri, B. (2024). Where might artificial intelligence be going in pharmaceutical development? Molecular Pharmaceutics, 21(3), 993–995. https://doi.org/10.1021/acs.molpharmaceut.4c00112
Shinde, A., Pawar, D., & Sonawane, K. (2021). Automation in pharmaceutical sector by implementation of artificial intelligence platform: a way forward. International Journal of Basic & Clinical Pharmacology, 10(7), 863–869. https://doi.org/10.18203/2319-2003.ijbcp20212387
Pereira, C. S. V. (2019). Artificial intelligence and machine learning in pharmaceutical sciences. Estudo Geral. Retrieved January 11, 2025, from https://estudogeral.uc.pt/handle/10316/88378
Yingngam, B., Navabhatra, A., & Sillapapibool, P. (2024). AI-Driven Decision-Making applications in Pharmaceutical Sciences. In T. V. T. Nguyen & N. T. M. Vo (Eds.), Using Traditional Design Methods to Enhance AI-Driven Decision Making (pp. 1–63). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-0639-0.ch001
Kapustina, O., Burmakina, P., Gubina, N., Serov, N., & Vinogradov, V. (2024). User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals. Artificial Intelligence Chemistry, 2(2), 100072. https://doi.org/10.1016/j.aichem.2024.100072
Saha, G. C., Eni, L. N., Saha, H., Parida, P. K., Rathinavelu, R., Jain, S. K., & Haldar, B. (2023). Artificial intelligence in pharmaceutical Manufacturing: Enhancing quality control and decision making. Rivista Italiana Di Filosofia Analitica Junior, 14(2), 116–126. https://www.researchgate.net/profile/Gonesh-Saha-2/publication/375330771_Artificial_Intelligence_in_Pharmaceutical_Manufacturing_Enhancing_Quality_Control_and_Decision_Making/links/6559b9da3fa26f66f4135616/Artificial-Intelligence-in-Pharmaceutical-Manufacturing-Enhancing-Quality-Control-and-Decision-Making.pdf?trk=public_post_comment-text
Sahu, A., Mishra, J., & Kushwaha, N. (2022). Artificial intelligence (AI) in drugs and pharmaceuticals. Combinatorial Chemistry & High Throughput Screening, 25(11), 1818–1837. https://doi.org/10.2174/1386207325666211207153943
Shaki, F., Amilrkhanloo, M., Jahani, D., & Chahrdori, M. (2024). Artificial intelligence in Pharmaceuticals: Exploring applications and legal challenges. Pharmaceutical and Biomedical Research, 10(1), 1–10. https://doi.org/10.32598/pbr.10.1.1257.1
Pazhayattil, A. B. (2022). Machine learning and artificial intelligence strategies for the pharmaceutical industry. ProQuest Dissertations & Theses. Retrieved January 11, 2025, from https://www.proquest.com/openview/640137882759c22b82fbb9994ef25d5e/1?pq-origsite=gscholar&cbl=18750&diss=y
Suriyaamporn, P., Pamornpathomkul, B., Patrojanasophon, P., Ngawhirunpat, T., Rojanarata, T., & Opanasopit, P. (2024). The Artificial Intelligence-Powered New Era in Pharmaceutical Research and Development: A review. AAPS PharmSciTech, 25, 188. https://doi.org/10.1208/s12249-024-02901-y
Ju, L., Hellander, A., & Spjuth, O. (2024). Federated learning for predicting compound mechanism of action based on image-data from cell painting. Artificial Intelligence in the Life Sciences, 5, 100098. https://doi.org/10.1016/j.ailsci.2024.100098
T, M. K., B, P., Nunavath, R. S., & Nagappan, K. (2024). Future of pharmaceutical Industry: Role of artificial intelligence, automation, and robotics. Journal of Pharmacology and Pharmacotherapeutics, 15(2), 142–152. https://doi.org/10.1177/0976500x241252295
Swapna, B. V., Shetty, S., Shetty, M., & Shetty, S. S. (2024). Smart science: How artificial intelligence is revolutionizing pharmaceutical medicine. Acta Marisiensis - Seria Medica, 70(1), 8–15. https://doi.org/10.2478/amma-2024-0002
Ahuja, A., Murti, Y., & Singh, S. (2025). Exploring the potential of artificial intelligence in medical research: applications, regulatory concerns, opportunities and future outlook- a mini review. Letters in Drug Design & Discovery, 22, 1–16. https://doi.org/10.2174/0115701808342987241216081153
Ullagaddi, P. (2024). Leveraging digital transformation for enhanced risk mitigation and compliance in pharma manufacturing. Journal of Advances in Medical and Pharmaceutical Sciences, 26(6), 75–86. https://doi.org/10.9734/jamps/2024/v26i6697
Ajami, R. A., & Karimi, H. A. (2023). Artificial intelligence: opportunities and challenges. Journal of Asia-Pacific Business, 24(2), 73–75. https://doi.org/10.1080/10599231.2023.2210239
Markus, B., C, G. C., Andreas, K., Arkadij, K., Stefan, L., Gustav, O., Elina, S., & Radka, S. (2023). Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design. ACS Catalysis, 13(21), 14454–14469. https://doi.org/10.1021/acscatal.3c03417
Henstock, P. (2020). Artificial intelligence in pharma: Positive trends but more investment needed to drive a transformation. Archives of Pharmacology and Therapeutics, 2(2), 24–28. https://doi.org/10.33696/pharmacol.2.017
Suzuki, H., Kurosawa, S., Marcella, S., Kanba, M., Koretaka, Y., Tsuji, A., & Okumura, T. (2022). How AI application in pharmaceutical industries is beneficial to materials science. Journal of Physics D: Applied Physics, 55(24), 243002. https://doi.org/10.1088/1361-6463/ac3a48
IBM. (2021). What is artificial intelligence in medicine? IBM. Retrieved January 11, 2025, from https://www.ibm.com/think/topics/artificial-intelligence-medicine
PPN Marketing. (2021). Pharmacy Talk with IBM Watson Health. Pharmacy Podcast Network. Retrieved January 11, 2025, from https://pharmacypodcast.com/2021/12/21/pharmacy-talk-with-ibm-watson-health/
Buntz, B. (2023). How 11 Big Pharma companies are using AI. Pharmaceutical Processing World. Retrieved January 11, 2025, from https://www.pharmaceuticalprocessingworld.com/ai-pharma-drug-development-billion-opportunity/
Virtasant. (2024). Pfizer’s AI drug discovery cuts years off development time. Virtasant. Retrieved January 11, 2025, from https://www.virtasant.com/ai-today/revolutionizing-healthcare-pfizers-ai-journey-to-drug-discovery-and-personalized-medicine-2
Pfizer Inc. (2021). Data and AI are helping to get medicines to patients faster. Pfizer 2022 Annual Review. Retrieved January 11, 2025, from https://www.pfizer.com/sites/default/files/investors/financial_reports/annual_reports/2022/story/data-and-ai-are-helping-to-get-medicines-to-patients-faster/
Shah-Neville, W. (2024). Five AI drug discovery companies you should know about. Labiotech.eu. Retrieved January 11, 2025, from https://www.labiotech.eu/best-biotech/ai-drug-discovery-companies/
Kiro Grifols. (2025). Robotic and other compounding devices. Kiro Grifols. Retrieved January 11, 2025, from https://www.kirogrifols.com/
StartUs Insights. (2020). 5 Top Robotics & Automation Startups Impacting The Pharma Industry. StartUs Insights. Retrieved January 11, 2025, from https://www.startus-insights.com/innovators-guide/5-top-robotics-automation-startups-impacting-pharma-industry/
Thermo Fisher Scientific. (n.d.). Lab robotics. Thermo Fisher Scientific. Retrieved January 11, 2025, from https://www.thermofisher.com/us/en/home/life-science/lab-equipment/lab-automation/lab-robotics.html
Thermo Fisher Scientific. (n.d.). Lab automation. Thermo Fisher Scientific. Retrieved January 11, 2025, from https://www.thermofisher.com/us/en/home/life-science/lab-equipment/lab-automation.html
Smith-Wong, K. (2024). Robotics companies & manufacturers for the pharmaceutical industry. Pharmaceutical Technology. Retrieved January 11, 2025, from https://www.pharmaceutical-technology.com/buyers-guide/top-robotics-companies/
Getinge AB. (n.d.). Cage Handling System. Getinge. Retrieved January 11, 2025, from https://www.getinge.com/int/products/cage-handling-system/
Abita LLC & Marketing Japan. (2024). Innovation at the Getinge Group: The future of Medical Robotics and Digitalization. Abita LLC & Marketing Japan. Retrieved January 11, 2025, from https://1xmarketing.com/news/en/world-marketing-diary-240724092609/
ABB. (2023). How robots are changing the pharmaceutical industry. ABB. Retrieved January 11, 2025, from https://new.abb.com/news/detail/101947/how-robots-are-changing-the-pharmaceutical-industry
ABB Robotics. (n.d.). Life Sciences and healthcare. ABB Robotics. Retrieved January 11, 2025, from https://new.abb.com/products/robotics/industries/life-sciences-healthcare
DeMarco, S. (2024). The robots making cell therapies. Drug Discovery News. Retrieved January 11, 2025, from https://www.drugdiscoverynews.com/the-robots-making-cell-therapies-15976
Owen-Hill, A. (2024). Transforming cell therapy manufacturing: The power of Robotics at Multiply Labs. RoboDK Blog. Retrieved January 11, 2025, from https://robodk.com/blog/cell-therapy-manufacturing/
Business Wire. (2024). Multiply Labs unveils first Peer-Reviewed study showing that robotic cell expansion can match the performance and reduce the costs of a manual process. Business Wire. Retrieved January 11, 2025, from https://www.businesswire.com/news/home/20240326888217/en/Multiply-Labs-Unveils-First-Peer-Reviewed-Study-Showing-that-Robotic-Cell-Expansion-Can-Match-the-Performance-and-Reduce-the-Costs-of-a-Manual-Process
Pharma Technology Focus. (2023). Case studies: Applications of Robotics in the pharmaceutical industry. Pharma Technology Focus. Retrieved January 11, 2025, from https://pharma.nridigital.com/pharma_sep23/case-studies-robotics-pharma-industry
Insilico Medicine. (2022). The next step in AI drug discovery: robots. Insilico Medicine. Retrieved January 11, 2025, from https://insilico.com/roboticslab
Henderson, E. (2023). Insilico Medicine launches a 6th generation Intelligent Robotics Drug Discovery Laboratory. News-Medical. Retrieved January 11, 2025, from https://www.news-medical.net/news/20230105/Insilico-Medicine-launches-a-6th-generation-Intelligent-Robotics-Drug-Discovery-Laboratory.aspx
Wang, L., Ding, J., Pan, L., Cao, D., Jiang, H., & Ding, X. (2019). Artificial intelligence facilitates drug design in the big data era. Chemometrics and Intelligent Laboratory Systems, 194, 103850. https://doi.org/10.1016/j.chemolab.2019.103850
Sethuraman, N. (2020). Artificial Intelligence: a new paradigm for pharmaceutical applications in formulations development. Indian Journal of Pharmaceutical Education and Research, 54(4), 843–846. https://doi.org/10.5530/ijper.54.4.176
Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2020). Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2, 573–584. https://doi.org/10.1038/s42256-020-00236-4
Archer, M., & Germain, S. (2021). The integration of artificial intelligence in drug discovery and development. International Journal of Digital Health, 1(1), 5. https://doi.org/10.29337/ijdh.31
Tang, J., Wang, F., & Cheng, F. (2021). Artificial Intelligence for Drug Discovery. KDD ’21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 4074–4075. https://doi.org/10.1145/3447548.3470796
Moingeon, P. (2021). Applications de l’intelligence artificielle au développement de nouveaux médicaments. Annales Pharmaceutiques Françaises, 79(5), 566–571. https://doi.org/10.1016/j.pharma.2021.01.008
Borkotoky, S., Joshi, A., Kaushik, V., & Jha, A. N. (2022). Machine learning and artificial intelligence in therapeutics and drug development life cycle. In J. Akhtar, Badruddeen, M. Ahmad, & M. I. Khan (Eds.), Drug Development Life Cycle. https://doi.org/10.5772/intechopen.104753
Lluka, T., & Stokes, J. M. (2022). Antibiotic discovery in the artificial intelligence era. Annals of the New York Academy of Sciences, 1519(1), 74–93. https://doi.org/10.1111/nyas.14930
Sharma, A. K. (2022). A study on the applicability of AI in Pharmaceutical Industry. 2022 1st International Conference on Computational Science and Technology (ICCST), 501–505. https://doi.org/10.1109/iccst55948.2022.10040339
Craig, M., Caicedo, J., Das, P., Collins, J., Grisoni, F., De La Fuente-Núñez, C., Lin, Y.-S., & Tang, J. (2022). AI and drug discovery. Cell Reports Physical Science, 3(11), 101142. https://doi.org/10.1016/j.xcrp.2022.101142
Mhatre, G. (2023). Artificial intelligence in drugs discovery and development. International Journal of Scientific Research in Engineering and Management (IJSREM), 07(04), 1–6. https://doi.org/10.55041/ijsrem18863
Acharjee, P. B., Ghai, B., Elangovan, M., Bhuvaneshwari, S., Rastogi, R., & Rajkumar, P. (2023). Exploring AI-driven approaches to drug discovery and development. The Scientific Temper, 14(04), 1387–1393. https://doi.org/10.58414/scientifictemper.2023.14.4.48
Parvathaneni, M., Awol, A. K., Kumari, M., Lan, K., & Lingam, M. (2023). Application of artificial intelligence and machine learning in drug discovery and development. Journal of Drug Delivery and Therapeutics, 13(1), 151–158. https://doi.org/10.22270/jddt.v13i1.5867
Patnaik, S., Sahu, M., Padmasri, B., Damarasingu, P., Nayak, D. M., Panigrahi, R., Haque, M. A., & Panigrahi, S. (2023). Transforming Drug Discovery and Development:The Impact of Artificial Intelligence. Journal of Chemical Health Risks, 13(4), 1850–1857. https://doi.org/10.52783/jchr.v13.i4.1303
Nguyen, A. T. N., Nguyen, D. T. N., Koh, H. Y., Toskov, J., MacLean, W., Xu, A., Zhang, D., Webb, G. I., May, L. T., & Halls, M. L. (2023). The application of artificial intelligence to accelerate G protein‐coupled receptor drug discovery. British Journal of Pharmacology, 181(14), 2371–2384. https://doi.org/10.1111/bph.16140
Sahgal, G., & Sundarasekar, J. (2024). Artificial Intelligence in Drug Discovery and Development. In S. Bose, A. C. Shukla, M. R. Baig, & S. Banerjee (Eds.), Concepts in Pharmaceutical Biotechnology and Drug Development (pp. 363–385). Springer. https://doi.org/10.1007/978-981-97-1148-2_17
Huanbutta, K., Burapapadh, K., Kraisit, P., Sriamornsak, P., Ganokratanaa, T., Suwanpitak, K., & Sangnim, T. (2024). The Artificial Intelligence-Driven Pharmaceutical Industry: A paradigm shift in drug discovery, formulation development, manufacturing, quality control, and Post-Market surveillance. European Journal of Pharmaceutical Sciences, 203, 106938. https://doi.org/10.1016/j.ejps.2024.106938
Ujjwal, A. (2024). The Integration of Artificial Intelligence in Drug Discovery and Development : Novel approach. International Journal of Scientific Research in Science and Technology, 11(6), 228–237. https://doi.org/10.32628/ijsrst24116175
Chakravarthi, C. H. M., Mulpuru, V., & Mishra, N. (2024). Artificial intelligence and bioinformatics: a powerful synergy for drug design and discovery. In BENTHAM SCIENCE PUBLISHERS eBooks (pp. 26–79). https://doi.org/10.2174/9789815305180124010006
Patne, A. Y., Dhulipala, S. M., Lawless, W., Prakash, S., Mohapatra, S. S., & Mohapatra, S. (2024). Drug Discovery in the Age of Artificial Intelligence: Transformative Target-Based Approaches. International Journal of Molecular Sciences, 25(22), 12233. https://doi.org/10.3390/ijms252212233
Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024). Artificial intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics, 16(10), 1328. https://doi.org/10.3390/pharmaceutics16101328
Rosso, V., Albrecht, J., Roberts, F., & Janey, J. M. (2019). Uniting laboratory automation, DoE data, and modeling techniques to accelerate chemical process development. Reaction Chemistry & Engineering, 4(9), 1646–1657. https://doi.org/10.1039/c9re00079h
Palamattathkuttiyil, T. G., Somareddy, H. K., Thirumaleshwar, S., & Gowrav, M. P. (2020). Impact of automation in pharmaceutical industry on roles and responsibilities of quality assurance: a review. International Journal of Pharmaceutical Quality Assurance, 11(1), 166–172. https://doi.org/10.25258/ijpqa.11.1.26
Kujau, B. R., Raffaelli, J., & Klaas, C. (2020). 3PC-010 Evaluation of the production accuracy and error rate in the automated compounding of cytotoxic preparations by a robot. European Journal of Hospital Pharmacy, 27, A26. https://doi.org/10.1136/ejhpharm-2020-eahpconf.57
Opaspilai, P., Vongbunyong, S., & Dheeravongkit, A. (2021). Robotic system for depalletization of pharmaceutical products. 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST), 133–138. https://doi.org/10.1109/iceast52143.2021.9426302
Hole, G., Hole, A. S., & McFalone-Shaw, I. (2021). Digitalization in pharmaceutical industry: What to focus on under the digital implementation process? International Journal of Pharmaceutics: X, 3, 100095. https://doi.org/10.1016/j.ijpx.2021.100095
Courtney, P., & Royall, P. G. (2021). Using robotics in laboratories during the COVID-19 Outbreak: A review. IEEE Robotics & Automation Magazine, 28(1), 28–39. https://doi.org/10.1109/mra.2020.3045067
Ochs, J., Hanga, M. P., Shaw, G., Duffy, N., Kulik, M., Tissin, N., Reibert, D., Biermann, F., Moutsatsou, P., Ratnayake, S., Nienow, A., Koenig, N., Schmitt, R., Rafiq, Q., Hewitt, C. J., Barry, F., & Murphy, J. M. (2022). Needle to needle robot‐assisted manufacture of cell therapy products. Bioengineering & Translational Medicine, 7(3), e10387. https://doi.org/10.1002/btm2.10387
Mathew, R., McGee, R., Roche, K., Warreth, S., & Papakostas, N. (2022). Introducing Mobile Collaborative Robots into Bioprocessing Environments: Personalised Drug Manufacturing and Environmental Monitoring. Applied Sciences, 12(21), 10895. https://doi.org/10.3390/app122110895
Alahmari, A. R., Alrabghi, K. K., & Dighriri, I. M. (2022). An overview of the current state and perspectives of pharmacy robot and medication dispensing technology. Cureus, 14(8), e28642. https://doi.org/10.7759/cureus.28642
Saharan, V. A. (2022). Robotic automation of pharmaceutical and life science industries. In V. A. Saharan (Ed.), Computer Aided Pharmaceutics and Drug Delivery (pp. 381–414). Springer. https://doi.org/10.1007/978-981-16-5180-9_12
Borkar, S., Ghutke, P., Patil, W., Joshi, S., & Sorte, S. (2023). Advancing pharmaceutical manufacturing through Delta robot fabrication. 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), 269–274. https://doi.org/10.1109/icccmla58983.2023.10346873
Arce, D., Pérez-Zuñiga, G., Flores, E., Cuellar, F., & Jimenez, V. (2023). Design and Implementation of Automatic Palletizing System with Vision Based Algorithms for Quality Control. 2023 5th International Conference on Robotics and Computer Vision (ICRCV), 271–277. https://doi.org/10.1109/icrcv59470.2023.10329106
Yu, H., Møller, V. K., Frandsen, R. J. N., & Mansourvar, M. (2023). Image processing for robotic control in life science laboratory automation. 2023 5th International Conference on Robotics and Computer Vision (ICRCV), 305–309. https://doi.org/10.1109/icrcv59470.2023.10329251
Borkar, S., Ghutke, P., Patil, W., Joshi, S., & Sorte, S. (2023). A review of pick and place robots for the pharmaceutical industry. 2023 11th International Conference on Emerging Trends in Engineering & Technology - Signal and Information Processing (ICETET - SIP), 1–6. https://doi.org/10.1109/icetet-sip58143.2023.10151652
Stasevych, M., & Zvarych, V. (2023). Innovative robotic Technologies and Artificial intelligence in Pharmacy and Medicine: Paving the Way for the Future of Health Care—A review. Big Data and Cognitive Computing, 7(3), 147. https://doi.org/10.3390/bdcc7030147
Thieme, A., Renwick, S., Marschmann, M., Guimaraes, P. I., Weissenborn, S., & Clifton, J. (2024). Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment. SLAS Technology, 29(5), 100180. https://doi.org/10.1016/j.slast.2024.100180
Klymenko, O. (2024). Research on the application of dynamic programming algorithm for load balancing on conveyor lines in the pharmaceutical industry. Débats scientifiques et orientations prospectives du développement scientifique, 184–186. https://doi.org/10.36074/logos-01.03.2024.041
Bao, K., Yoon, J. S., Ahn, S., Lee, J. H., Cross, C. J., Jeong, M. Y., Frangioni, J. V., & Choi, H. S. (2024). A robotic system for automated chemical synthesis of therapeutic agents. Materials Advances, 5(12), 5290–5297. https://doi.org/10.1039/d4ma00099d
Tang, R., Guo, S., Qiu, Y., Chen, H., Huang, L., Yong, M., Zhou, L., & Guo, L. (2024). Optimizing Drug delivery in smart pharmacies: a novel framework of Multi-Stage grasping network combined with adaptive robotics mechanism. arXiv (Cornell University), 1–13. https://doi.org/10.48550/arxiv.2410.00753
Slattery, A., Wen, Z., Tenblad, P., Sanjosé-Orduna, J., Pintossi, D., Hartog, T. D., & Noël, T. (2024). Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science, 383(6681). https://doi.org/10.1126/science.adj1817
Topelius, N. S., Shokraneh, F., Bahman, M., Lahtinen, J., Hassinen, N., Airaksinen, S., Verma, S., Hrizanovska, L., Lass, J., Paaver, U., Tähnas, J., Kern, C., Lagarce, F., Fenske, D., Malik, J., Scherliess, H., Cruz, S. P., Paulsson, M., Dekker, J., Kammonen, K., Rautamo, M., Lück, H., Pierrot, A., Stareprawo, S., Tubic-Grozdanis, M., Zibolka, S., Lösch, U., Jeske, M., Griesser, U., Hummer, K., Thalmeier, A., Harjans, A., Kruse, A., Heimke-Brinck, R., Khoukh, K., & Bruno, F. (2024). Automated Non-Sterile Pharmacy Compounding: A Multi-Site Study in European Hospital and Community Pharmacies with Pediatric Immediate Release Propranolol Hydrochloride Tablets. Pharmaceutics, 16(5), 678. https://doi.org/10.3390/pharmaceutics16050678
Fang, B., Guo, X., Wang, Z., Li, Y., Elhoseny, M., & Yuan, X. (2019). Collaborative task assignment of interconnected, affective robots towards autonomous healthcare assistant. Future Generation Computer Systems, 92, 241–251. https://doi.org/10.1016/j.future.2018.09.069
Bauer, J., Hoq, M. N., Mulcahy, J., Tofail, S. A. M., Gulshan, F., Silien, C., Podbielska, H., & Akbar, M. M. (2020). Implementation of artificial intelligence and non-contact infrared thermography for prediction and personalized automatic identification of different stages of cellulite. The EPMA Journal, 11, 17–29. https://doi.org/10.1007/s13167-020-00199-x
Ghita, M., Neckebroek, M., Muresan, C., & Copot, D. (2020). Closed-Loop Control of Anesthesia: Survey on actual trends, challenges and perspectives. IEEE Access, 8, 206264–206279. https://doi.org/10.1109/access.2020.3037725
De La Vega, F. M., Chowdhury, S., Moore, B., Frise, E., McCarthy, J., Hernandez, E. J., Wong, T., James, K., Guidugli, L., Agrawal, P. B., Genetti, C. A., Brownstein, C. A., Beggs, A. H., Löscher, B. -S., Franke, A., Boone, B., Levy, S. E., Õunap, K., Pajusalu, S., Huentelman, M., Ramsey, K., Naymik, M., Narayanan, V., Veeraraghavan, N., Billings, P., Reese, M. G., Yandell, M., & Kingsmore, S. F. (2021). Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Medicine, 13, 153. https://doi.org/10.1186/s13073-021-00965-0
Tsopra, R., Fernandez, X., Luchinat, C., Alberghina, L., Lehrach, H., Vanoni, M., Dreher, F., Sezerman, O., Cuggia, M., De Tayrac, M., Miklasevics, E., Itu, L. M., Geanta, M., Ogilvie, L., Godey, F., Boldisor, C. N., Campillo-Gimenez, B., Cioroboiu, C., Ciusdel, C. F., Coman, S., Cubelos, O. H., Itu, A., Lange, B., Gallo, M. L., Lespagnol, A., Mauri, G., Soykam, H., Rance, B., Turano, P., Tenori, L., Vignoli, A., Wierling, C., Benhabiles, N., & Burgun, A. (2021). A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. BMC Medical Informatics and Decision Making, 21, 274. https://doi.org/10.1186/s12911-021-01634-3
Gasteiger, N., & Broadbent, E. (2021). AI, robotics, medicine and health sciences. In The Routledge Social Science Handbook of AI (1st ed., pp. 313–338). Routledge. https://doi.org/10.4324/9780429198533-22
Kumar, P. P., Kumar, T. A., Rajmohan, R., & Pavithra, M. (2022). AI-Based robotics in E-Healthcare applications. In Intelligent Interactive Multimedia Systems for e-Healthcare Applications (1st ed., pp. 249–269). Apple Academic Press. https://doi.org/10.1201/9781003282112-15
Sorrentino, A., Fiorini, L., Mancioppi, G., Cavallo, F., Umbrico, A., Cesta, A., & Orlandini, A. (2022). Personalizing care through robotic assistance and clinical supervision. Frontiers in Robotics and AI, 9, 883814. https://doi.org/10.3389/frobt.2022.883814
Jain, G., & Jain, A. (2022). Applications of AI, IoT, and robotics in healthcare service based on several aspects. In Blockchain Technology in Healthcare Applications (1st ed., pp. 87–114). CRC Press. https://doi.org/10.1201/9781003224075-5
Costa, T., Coelho, L., & Silva, M. S. (2022). Integrating computer vision, robotics, and artificial intelligence for healthcare. In Non INESC TEC publications (pp. 134–162). INESC TEC Documental Repository. https://repositorio.inesctec.pt/handle/123456789/13916
Ahmad, S. S., Meehan, A., Crispin-Ortuzar, M., & Weckman, N. E. (2023). Personalized, connected health enabled by AI and home-based diagnostics. Trends in Biotechnology, 41(7), 982–983. https://doi.org/10.1016/j.tibtech.2023.03.013
Edmonds, J. K. (2023). Use of artificial intelligence to improve women’s health and enhance nursing care. JOGN Nursing, 52(3), 169–171. https://doi.org/10.1016/j.jogn.2023.03.004
Kumar, P., Chauhan, S., & Awasthi, L. K. (2023). Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions. Engineering Applications of Artificial Intelligence, 120, 105894. https://doi.org/10.1016/j.engappai.2023.105894
D’Silva, B., & Gatti, R. R. (2023). Applications of AI-enabled robotics in healthcare. In Bentham Science Publishers (pp. 248–261). https://doi.org/10.2174/9789815196054123050018
Vardhanabhuti, V., Kwok, K.-W., Chan, J. Y. K., & Dou, Q. (2023). Machine learning, medical AI and robotics: Translating theory into the clinic. IOP Publishing. https://doi.org/10.1088/978-0-7503-4637-5
De Micco, F., Grassi, S., Tomassini, L., Di Palma, G., Ricchezze, G., & Scendoni, R. (2024). Robotics and AI into healthcare From the perspective of European regulation: Who is responsible for medical malpractice? Frontiers in Medicine, 11, 1428504. https://doi.org/10.3389/fmed.2024.1428504
Trezza, A., Visibelli, A., Roncaglia, B., Spiga, O., & Santucci, A. (2024). Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI. Applied Sciences, 14(20), 9305. https://doi.org/10.3390/app14209305
Gupta, N., & Jha, R. (2024). Artificial intelligence (AI) in medical robotics. In Advances in Artificial Intelligence: Biomedical Engineering Applications in Signals and Imaging (pp. 141–167). Academic Press. https://doi.org/10.1016/b978-0-443-19073-5.00006-9
Shafik, W., Tufail, A., De Silva Liyanage, C., & Apong, R. A. A. H. M. (2024). Medical robotics and AI-Assisted diagnostics challenges for smart sustainable healthcare. In A. Khang (Ed.), AI-Driven Innovations in Digital Healthcare: Emerging Trends, Challenges, and Applications (pp. 304–323). IGI Global. https://doi.org/10.4018/979-8-3693-3218-4.ch016
Sudha, K., Balakrishnan, C., Varun, C. M., & Subramanian, R. S. (2024). Advancements in medical robotics and AI-Assisted diagnostics. In A. Khang (Ed.), AI-Driven Innovations in Digital Healthcare: Emerging Trends, Challenges, and Applications (pp. 23–46). IGI Global. https://doi.org/10.4018/979-8-3693-3218-4.ch002
Maglogiannis, I., Trastelis, F., Kalogeropoulos, M., Khan, A., Gallos, P., Menychtas, A., Panagopoulos, C., Papachristou, P., Islam, N., Wolff, A., Soares, S., Hansen, S., & Scholze, S. (2024). AI4Work Project: Human-Centric Digital Twin approaches to trustworthy AI and robotics for improved working conditions in healthcare and education sectors. In Studies in health technology and informatics (Vol. 316, pp. 1013–1017). IOS Press Ebooks. https://doi.org/10.3233/shti240581
Mirakhori, F., & Niazi, S. K. (2025). Harnessing the AI/ML in Drug and Biological Products Discovery and Development: the Regulatory Perspective. Pharmaceuticals, 18(1), 47. https://doi.org/10.3390/ph18010047
Aundhia, C., Parmar, G., Talele, C., Shah, N., & Talele, D. (2024). Impact of artificial intelligence on drug development and delivery. Current Topics in Medicinal Chemistry, 24, e15680266324522. https://doi.org/10.2174/0115680266324522240725053634
Rao, G. N., Gunasundari, C., Babu, S. B. G. T., G, P., Dwivedi, V. K., & Shaik, B. (2024). AI-Driven Drug Discovery: Computational methods and applications. 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), 46–50. https://doi.org/10.1109/icrtcst61793.2024.10578434
Kang, H. S. (2024). AI and Pharma: Transforming the paradigm, embracing the new era. Artificial Intelligence in Health, 1(3), 1–9. https://doi.org/10.36922/aih.2973
Published
How to Cite
Issue
Section
Copyright (c) 2025 Tropical Journal of Pharmaceutical and Life Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.