APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND ROBOTICS IN PHARMACEUTICAL SCIENCES: ADVANCING DRUG DISCOVERY, PERSONALIZED MEDICINE, AND PHARMACEUTICAL MANUFACTURING

  • Parankush Koul Illinois Institute of Technology, 3201 South State Street, Chicago, 60616, Illinois, United States of America
  • Dr. Indu B. Koul Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012, India
10.61280/tjpls.v12i2.169

Keywords:

Artificial Intelligence, Robotics, Drug Discovery, Personalized Medicine, Pharmaceutical Manufacturing

Abstract

This paper reviews the major contributions made by artificial intelligence (AI) and robotics to pharmaceutical sciences, particularly drug discovery, personalized medicine, and pharmaceutical manufacturing. It demonstrates the speed and cost efficiency of finding therapeutic candidates using large chemical libraries and biological data generated by AI applications that accelerate this process over traditional techniques. Furthermore, AI predictive capabilities to predict the drug’s pharmacokinetic and pharmacodynamic profile help to minimize the risks of late-stage clinical trial failure and facilitate the process of developing drugs. In the personalized medicine arena, AI’s potential to learn from genetic, environmental, and lifestyle data enables the development of custom-tailored treatment plans to improve patients’ outcomes while mitigating negative side effects. These are enhanced by robotics to automate drug synthesis, ensure dosage consistency, and enhance patient safety. It is likely that AI will play a vital role in drug discovery in the future, and cutting-edge machine learning (ML) algorithms will help to dramatically speed up the identification of novel therapeutic targets while saving time and money by delaying or eliminating traditional discovery steps. Also, AI and robotics can be integrated into pharmaceutical manufacturing in order to optimize efficiency by continuously monitoring and optimizing the production processes, enhancing supply chain optimization, and ensuring quality assurance (QA). Overall, this review highlights the impact of AI and robotics in pharmaceutical sciences for creating a more effective and customized healthcare system, which will make patient care and treatment outcomes more efficient.

Downloads

Download data is not yet available.

Author Biographies

Parankush Koul, Illinois Institute of Technology, 3201 South State Street, Chicago, 60616, Illinois, United States of America

Department of Mechanical and Aerospace Engineering

Dr. Indu B. Koul, Postgraduate Institute of Medical Education and Research, Sector-12, Chandigarh, 160012, India

Department of Biochemistry

References

Mottaghi-Dastjerdi, N., & Soltany-Rezaee-Rad, M. (2024). Advancements and Applications of Artificial Intelligence in Pharmaceutical Sciences: A Comprehensive review. IJ Pharmaceutical Research (IJPR), 23(1), e150510. https://doi.org/10.5812/ijpr-150510

Bharadwaj, S., Deepika, K., Kumar, A., Jaiswal, S., Miglani, S., Singh, D., Fartyal, P., Kumar, R., Singh, S., Singh, M. P., Gaidhane, A. M., Kumar, B., & Jha, V. (2024). Exploring the artificial intelligence and its impact in pharmaceutical sciences: Insights toward the horizons where technology meets tradition. Chemical Biology & Drug Design, 104(4), 1–23. https://doi.org/10.1111/cbdd.14639

Sahoo, D. K., Sarangi, R. R., Nayak, S. K., V., R., & Sayeed, M. (2024). Discovering New Horizons: A systematic review on artificial intelligence applications in drug discovery and development. International Journal of Pharmaceutical Quality Assurance, 15(3), 1151–1157. https://doi.org/10.25258/ijpqa.15.3.08

Lu, M., Yin, J., Zhu, Q., Lin, G., Mou, M., Liu, F., Pan, Z., You, N., Lian, X., Li, F., Zhang, H., Zheng, L., Zhang, W., Zhang, H., Shen, Z., Gu, Z., Li, H., & Zhu, F. (2023). Artificial Intelligence in Pharmaceutical Sciences. Engineering, 27, 37–69. https://doi.org/10.1016/j.eng.2023.01.014

Isani, A. I., Nagarbhadiya, A. D., & Tatewar, G. N. (2023). The concept of artificial intelligence in pharmaceutical industry. International Journal for Research Trends and Innovation, 8(4), 820–824. https://www.ijrti.org/papers/IJRTI2304136.pdf

Qi, C., & Lei, Y. (2022). Artificial intelligence applications in medical sciences: illustrations in pharmaceutical and medical imaging areas. Third International Conference on Computer Science and Communication Technology (ICCSCT 2022), 12506, 125063E. https://doi.org/10.1117/12.2661813

Duran, T., & Chaudhuri, B. (2024). Where might artificial intelligence be going in pharmaceutical development? Molecular Pharmaceutics, 21(3), 993–995. https://doi.org/10.1021/acs.molpharmaceut.4c00112

Shinde, A., Pawar, D., & Sonawane, K. (2021). Automation in pharmaceutical sector by implementation of artificial intelligence platform: a way forward. International Journal of Basic & Clinical Pharmacology, 10(7), 863–869. https://doi.org/10.18203/2319-2003.ijbcp20212387

Pereira, C. S. V. (2019). Artificial intelligence and machine learning in pharmaceutical sciences. Estudo Geral. Retrieved January 11, 2025, from https://estudogeral.uc.pt/handle/10316/88378

Yingngam, B., Navabhatra, A., & Sillapapibool, P. (2024). AI-Driven Decision-Making applications in Pharmaceutical Sciences. In T. V. T. Nguyen & N. T. M. Vo (Eds.), Using Traditional Design Methods to Enhance AI-Driven Decision Making (pp. 1–63). IGI Global Scientific Publishing. https://doi.org/10.4018/979-8-3693-0639-0.ch001

Kapustina, O., Burmakina, P., Gubina, N., Serov, N., & Vinogradov, V. (2024). User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals. Artificial Intelligence Chemistry, 2(2), 100072. https://doi.org/10.1016/j.aichem.2024.100072

Saha, G. C., Eni, L. N., Saha, H., Parida, P. K., Rathinavelu, R., Jain, S. K., & Haldar, B. (2023). Artificial intelligence in pharmaceutical Manufacturing: Enhancing quality control and decision making. Rivista Italiana Di Filosofia Analitica Junior, 14(2), 116–126. https://www.researchgate.net/profile/Gonesh-Saha-2/publication/375330771_Artificial_Intelligence_in_Pharmaceutical_Manufacturing_Enhancing_Quality_Control_and_Decision_Making/links/6559b9da3fa26f66f4135616/Artificial-Intelligence-in-Pharmaceutical-Manufacturing-Enhancing-Quality-Control-and-Decision-Making.pdf?trk=public_post_comment-text

Sahu, A., Mishra, J., & Kushwaha, N. (2022). Artificial intelligence (AI) in drugs and pharmaceuticals. Combinatorial Chemistry & High Throughput Screening, 25(11), 1818–1837. https://doi.org/10.2174/1386207325666211207153943

Shaki, F., Amilrkhanloo, M., Jahani, D., & Chahrdori, M. (2024). Artificial intelligence in Pharmaceuticals: Exploring applications and legal challenges. Pharmaceutical and Biomedical Research, 10(1), 1–10. https://doi.org/10.32598/pbr.10.1.1257.1

Pazhayattil, A. B. (2022). Machine learning and artificial intelligence strategies for the pharmaceutical industry. ProQuest Dissertations & Theses. Retrieved January 11, 2025, from https://www.proquest.com/openview/640137882759c22b82fbb9994ef25d5e/1?pq-origsite=gscholar&cbl=18750&diss=y

Suriyaamporn, P., Pamornpathomkul, B., Patrojanasophon, P., Ngawhirunpat, T., Rojanarata, T., & Opanasopit, P. (2024). The Artificial Intelligence-Powered New Era in Pharmaceutical Research and Development: A review. AAPS PharmSciTech, 25, 188. https://doi.org/10.1208/s12249-024-02901-y

Ju, L., Hellander, A., & Spjuth, O. (2024). Federated learning for predicting compound mechanism of action based on image-data from cell painting. Artificial Intelligence in the Life Sciences, 5, 100098. https://doi.org/10.1016/j.ailsci.2024.100098

T, M. K., B, P., Nunavath, R. S., & Nagappan, K. (2024). Future of pharmaceutical Industry: Role of artificial intelligence, automation, and robotics. Journal of Pharmacology and Pharmacotherapeutics, 15(2), 142–152. https://doi.org/10.1177/0976500x241252295

Swapna, B. V., Shetty, S., Shetty, M., & Shetty, S. S. (2024). Smart science: How artificial intelligence is revolutionizing pharmaceutical medicine. Acta Marisiensis - Seria Medica, 70(1), 8–15. https://doi.org/10.2478/amma-2024-0002

Ahuja, A., Murti, Y., & Singh, S. (2025). Exploring the potential of artificial intelligence in medical research: applications, regulatory concerns, opportunities and future outlook- a mini review. Letters in Drug Design & Discovery, 22, 1–16. https://doi.org/10.2174/0115701808342987241216081153

Ullagaddi, P. (2024). Leveraging digital transformation for enhanced risk mitigation and compliance in pharma manufacturing. Journal of Advances in Medical and Pharmaceutical Sciences, 26(6), 75–86. https://doi.org/10.9734/jamps/2024/v26i6697

Ajami, R. A., & Karimi, H. A. (2023). Artificial intelligence: opportunities and challenges. Journal of Asia-Pacific Business, 24(2), 73–75. https://doi.org/10.1080/10599231.2023.2210239

Markus, B., C, G. C., Andreas, K., Arkadij, K., Stefan, L., Gustav, O., Elina, S., & Radka, S. (2023). Accelerating Biocatalysis Discovery with Machine Learning: A Paradigm Shift in Enzyme Engineering, Discovery, and Design. ACS Catalysis, 13(21), 14454–14469. https://doi.org/10.1021/acscatal.3c03417

Henstock, P. (2020). Artificial intelligence in pharma: Positive trends but more investment needed to drive a transformation. Archives of Pharmacology and Therapeutics, 2(2), 24–28. https://doi.org/10.33696/pharmacol.2.017

Suzuki, H., Kurosawa, S., Marcella, S., Kanba, M., Koretaka, Y., Tsuji, A., & Okumura, T. (2022). How AI application in pharmaceutical industries is beneficial to materials science. Journal of Physics D: Applied Physics, 55(24), 243002. https://doi.org/10.1088/1361-6463/ac3a48

IBM. (2021). What is artificial intelligence in medicine? IBM. Retrieved January 11, 2025, from https://www.ibm.com/think/topics/artificial-intelligence-medicine

PPN Marketing. (2021). Pharmacy Talk with IBM Watson Health. Pharmacy Podcast Network. Retrieved January 11, 2025, from https://pharmacypodcast.com/2021/12/21/pharmacy-talk-with-ibm-watson-health/

Buntz, B. (2023). How 11 Big Pharma companies are using AI. Pharmaceutical Processing World. Retrieved January 11, 2025, from https://www.pharmaceuticalprocessingworld.com/ai-pharma-drug-development-billion-opportunity/

Virtasant. (2024). Pfizer’s AI drug discovery cuts years off development time. Virtasant. Retrieved January 11, 2025, from https://www.virtasant.com/ai-today/revolutionizing-healthcare-pfizers-ai-journey-to-drug-discovery-and-personalized-medicine-2

Pfizer Inc. (2021). Data and AI are helping to get medicines to patients faster. Pfizer 2022 Annual Review. Retrieved January 11, 2025, from https://www.pfizer.com/sites/default/files/investors/financial_reports/annual_reports/2022/story/data-and-ai-are-helping-to-get-medicines-to-patients-faster/

Shah-Neville, W. (2024). Five AI drug discovery companies you should know about. Labiotech.eu. Retrieved January 11, 2025, from https://www.labiotech.eu/best-biotech/ai-drug-discovery-companies/

Kiro Grifols. (2025). Robotic and other compounding devices. Kiro Grifols. Retrieved January 11, 2025, from https://www.kirogrifols.com/

StartUs Insights. (2020). 5 Top Robotics & Automation Startups Impacting The Pharma Industry. StartUs Insights. Retrieved January 11, 2025, from https://www.startus-insights.com/innovators-guide/5-top-robotics-automation-startups-impacting-pharma-industry/

Thermo Fisher Scientific. (n.d.). Lab robotics. Thermo Fisher Scientific. Retrieved January 11, 2025, from https://www.thermofisher.com/us/en/home/life-science/lab-equipment/lab-automation/lab-robotics.html

Thermo Fisher Scientific. (n.d.). Lab automation. Thermo Fisher Scientific. Retrieved January 11, 2025, from https://www.thermofisher.com/us/en/home/life-science/lab-equipment/lab-automation.html

Smith-Wong, K. (2024). Robotics companies & manufacturers for the pharmaceutical industry. Pharmaceutical Technology. Retrieved January 11, 2025, from https://www.pharmaceutical-technology.com/buyers-guide/top-robotics-companies/

Getinge AB. (n.d.). Cage Handling System. Getinge. Retrieved January 11, 2025, from https://www.getinge.com/int/products/cage-handling-system/

Abita LLC & Marketing Japan. (2024). Innovation at the Getinge Group: The future of Medical Robotics and Digitalization. Abita LLC & Marketing Japan. Retrieved January 11, 2025, from https://1xmarketing.com/news/en/world-marketing-diary-240724092609/

ABB. (2023). How robots are changing the pharmaceutical industry. ABB. Retrieved January 11, 2025, from https://new.abb.com/news/detail/101947/how-robots-are-changing-the-pharmaceutical-industry

ABB Robotics. (n.d.). Life Sciences and healthcare. ABB Robotics. Retrieved January 11, 2025, from https://new.abb.com/products/robotics/industries/life-sciences-healthcare

DeMarco, S. (2024). The robots making cell therapies. Drug Discovery News. Retrieved January 11, 2025, from https://www.drugdiscoverynews.com/the-robots-making-cell-therapies-15976

Owen-Hill, A. (2024). Transforming cell therapy manufacturing: The power of Robotics at Multiply Labs. RoboDK Blog. Retrieved January 11, 2025, from https://robodk.com/blog/cell-therapy-manufacturing/

Business Wire. (2024). Multiply Labs unveils first Peer-Reviewed study showing that robotic cell expansion can match the performance and reduce the costs of a manual process. Business Wire. Retrieved January 11, 2025, from https://www.businesswire.com/news/home/20240326888217/en/Multiply-Labs-Unveils-First-Peer-Reviewed-Study-Showing-that-Robotic-Cell-Expansion-Can-Match-the-Performance-and-Reduce-the-Costs-of-a-Manual-Process

Pharma Technology Focus. (2023). Case studies: Applications of Robotics in the pharmaceutical industry. Pharma Technology Focus. Retrieved January 11, 2025, from https://pharma.nridigital.com/pharma_sep23/case-studies-robotics-pharma-industry

Insilico Medicine. (2022). The next step in AI drug discovery: robots. Insilico Medicine. Retrieved January 11, 2025, from https://insilico.com/roboticslab

Henderson, E. (2023). Insilico Medicine launches a 6th generation Intelligent Robotics Drug Discovery Laboratory. News-Medical. Retrieved January 11, 2025, from https://www.news-medical.net/news/20230105/Insilico-Medicine-launches-a-6th-generation-Intelligent-Robotics-Drug-Discovery-Laboratory.aspx

Wang, L., Ding, J., Pan, L., Cao, D., Jiang, H., & Ding, X. (2019). Artificial intelligence facilitates drug design in the big data era. Chemometrics and Intelligent Laboratory Systems, 194, 103850. https://doi.org/10.1016/j.chemolab.2019.103850

Sethuraman, N. (2020). Artificial Intelligence: a new paradigm for pharmaceutical applications in formulations development. Indian Journal of Pharmaceutical Education and Research, 54(4), 843–846. https://doi.org/10.5530/ijper.54.4.176

Jiménez-Luna, J., Grisoni, F., & Schneider, G. (2020). Drug discovery with explainable artificial intelligence. Nature Machine Intelligence, 2, 573–584. https://doi.org/10.1038/s42256-020-00236-4

Archer, M., & Germain, S. (2021). The integration of artificial intelligence in drug discovery and development. International Journal of Digital Health, 1(1), 5. https://doi.org/10.29337/ijdh.31

Tang, J., Wang, F., & Cheng, F. (2021). Artificial Intelligence for Drug Discovery. KDD ’21: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 4074–4075. https://doi.org/10.1145/3447548.3470796

Moingeon, P. (2021). Applications de l’intelligence artificielle au développement de nouveaux médicaments. Annales Pharmaceutiques Françaises, 79(5), 566–571. https://doi.org/10.1016/j.pharma.2021.01.008

Borkotoky, S., Joshi, A., Kaushik, V., & Jha, A. N. (2022). Machine learning and artificial intelligence in therapeutics and drug development life cycle. In J. Akhtar, Badruddeen, M. Ahmad, & M. I. Khan (Eds.), Drug Development Life Cycle. https://doi.org/10.5772/intechopen.104753

Lluka, T., & Stokes, J. M. (2022). Antibiotic discovery in the artificial intelligence era. Annals of the New York Academy of Sciences, 1519(1), 74–93. https://doi.org/10.1111/nyas.14930

Sharma, A. K. (2022). A study on the applicability of AI in Pharmaceutical Industry. 2022 1st International Conference on Computational Science and Technology (ICCST), 501–505. https://doi.org/10.1109/iccst55948.2022.10040339

Craig, M., Caicedo, J., Das, P., Collins, J., Grisoni, F., De La Fuente-Núñez, C., Lin, Y.-S., & Tang, J. (2022). AI and drug discovery. Cell Reports Physical Science, 3(11), 101142. https://doi.org/10.1016/j.xcrp.2022.101142

Mhatre, G. (2023). Artificial intelligence in drugs discovery and development. International Journal of Scientific Research in Engineering and Management (IJSREM), 07(04), 1–6. https://doi.org/10.55041/ijsrem18863

Acharjee, P. B., Ghai, B., Elangovan, M., Bhuvaneshwari, S., Rastogi, R., & Rajkumar, P. (2023). Exploring AI-driven approaches to drug discovery and development. The Scientific Temper, 14(04), 1387–1393. https://doi.org/10.58414/scientifictemper.2023.14.4.48

Parvathaneni, M., Awol, A. K., Kumari, M., Lan, K., & Lingam, M. (2023). Application of artificial intelligence and machine learning in drug discovery and development. Journal of Drug Delivery and Therapeutics, 13(1), 151–158. https://doi.org/10.22270/jddt.v13i1.5867

Patnaik, S., Sahu, M., Padmasri, B., Damarasingu, P., Nayak, D. M., Panigrahi, R., Haque, M. A., & Panigrahi, S. (2023). Transforming Drug Discovery and Development:The Impact of Artificial Intelligence. Journal of Chemical Health Risks, 13(4), 1850–1857. https://doi.org/10.52783/jchr.v13.i4.1303

Nguyen, A. T. N., Nguyen, D. T. N., Koh, H. Y., Toskov, J., MacLean, W., Xu, A., Zhang, D., Webb, G. I., May, L. T., & Halls, M. L. (2023). The application of artificial intelligence to accelerate G protein‐coupled receptor drug discovery. British Journal of Pharmacology, 181(14), 2371–2384. https://doi.org/10.1111/bph.16140

Sahgal, G., & Sundarasekar, J. (2024). Artificial Intelligence in Drug Discovery and Development. In S. Bose, A. C. Shukla, M. R. Baig, & S. Banerjee (Eds.), Concepts in Pharmaceutical Biotechnology and Drug Development (pp. 363–385). Springer. https://doi.org/10.1007/978-981-97-1148-2_17

Huanbutta, K., Burapapadh, K., Kraisit, P., Sriamornsak, P., Ganokratanaa, T., Suwanpitak, K., & Sangnim, T. (2024). The Artificial Intelligence-Driven Pharmaceutical Industry: A paradigm shift in drug discovery, formulation development, manufacturing, quality control, and Post-Market surveillance. European Journal of Pharmaceutical Sciences, 203, 106938. https://doi.org/10.1016/j.ejps.2024.106938

Ujjwal, A. (2024). The Integration of Artificial Intelligence in Drug Discovery and Development : Novel approach. International Journal of Scientific Research in Science and Technology, 11(6), 228–237. https://doi.org/10.32628/ijsrst24116175

Chakravarthi, C. H. M., Mulpuru, V., & Mishra, N. (2024). Artificial intelligence and bioinformatics: a powerful synergy for drug design and discovery. In BENTHAM SCIENCE PUBLISHERS eBooks (pp. 26–79). https://doi.org/10.2174/9789815305180124010006

Patne, A. Y., Dhulipala, S. M., Lawless, W., Prakash, S., Mohapatra, S. S., & Mohapatra, S. (2024). Drug Discovery in the Age of Artificial Intelligence: Transformative Target-Based Approaches. International Journal of Molecular Sciences, 25(22), 12233. https://doi.org/10.3390/ijms252212233

Serrano, D. R., Luciano, F. C., Anaya, B. J., Ongoren, B., Kara, A., Molina, G., Ramirez, B. I., Sánchez-Guirales, S. A., Simon, J. A., Tomietto, G., Rapti, C., Ruiz, H. K., Rawat, S., Kumar, D., & Lalatsa, A. (2024). Artificial intelligence (AI) applications in drug discovery and drug delivery: Revolutionizing personalized medicine. Pharmaceutics, 16(10), 1328. https://doi.org/10.3390/pharmaceutics16101328

Rosso, V., Albrecht, J., Roberts, F., & Janey, J. M. (2019). Uniting laboratory automation, DoE data, and modeling techniques to accelerate chemical process development. Reaction Chemistry & Engineering, 4(9), 1646–1657. https://doi.org/10.1039/c9re00079h

Palamattathkuttiyil, T. G., Somareddy, H. K., Thirumaleshwar, S., & Gowrav, M. P. (2020). Impact of automation in pharmaceutical industry on roles and responsibilities of quality assurance: a review. International Journal of Pharmaceutical Quality Assurance, 11(1), 166–172. https://doi.org/10.25258/ijpqa.11.1.26

Kujau, B. R., Raffaelli, J., & Klaas, C. (2020). 3PC-010 Evaluation of the production accuracy and error rate in the automated compounding of cytotoxic preparations by a robot. European Journal of Hospital Pharmacy, 27, A26. https://doi.org/10.1136/ejhpharm-2020-eahpconf.57

Opaspilai, P., Vongbunyong, S., & Dheeravongkit, A. (2021). Robotic system for depalletization of pharmaceutical products. 2021 7th International Conference on Engineering, Applied Sciences and Technology (ICEAST), 133–138. https://doi.org/10.1109/iceast52143.2021.9426302

Hole, G., Hole, A. S., & McFalone-Shaw, I. (2021). Digitalization in pharmaceutical industry: What to focus on under the digital implementation process? International Journal of Pharmaceutics: X, 3, 100095. https://doi.org/10.1016/j.ijpx.2021.100095

Courtney, P., & Royall, P. G. (2021). Using robotics in laboratories during the COVID-19 Outbreak: A review. IEEE Robotics & Automation Magazine, 28(1), 28–39. https://doi.org/10.1109/mra.2020.3045067

Ochs, J., Hanga, M. P., Shaw, G., Duffy, N., Kulik, M., Tissin, N., Reibert, D., Biermann, F., Moutsatsou, P., Ratnayake, S., Nienow, A., Koenig, N., Schmitt, R., Rafiq, Q., Hewitt, C. J., Barry, F., & Murphy, J. M. (2022). Needle to needle robot‐assisted manufacture of cell therapy products. Bioengineering & Translational Medicine, 7(3), e10387. https://doi.org/10.1002/btm2.10387

Mathew, R., McGee, R., Roche, K., Warreth, S., & Papakostas, N. (2022). Introducing Mobile Collaborative Robots into Bioprocessing Environments: Personalised Drug Manufacturing and Environmental Monitoring. Applied Sciences, 12(21), 10895. https://doi.org/10.3390/app122110895

Alahmari, A. R., Alrabghi, K. K., & Dighriri, I. M. (2022). An overview of the current state and perspectives of pharmacy robot and medication dispensing technology. Cureus, 14(8), e28642. https://doi.org/10.7759/cureus.28642

Saharan, V. A. (2022). Robotic automation of pharmaceutical and life science industries. In V. A. Saharan (Ed.), Computer Aided Pharmaceutics and Drug Delivery (pp. 381–414). Springer. https://doi.org/10.1007/978-981-16-5180-9_12

Borkar, S., Ghutke, P., Patil, W., Joshi, S., & Sorte, S. (2023). Advancing pharmaceutical manufacturing through Delta robot fabrication. 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA), 269–274. https://doi.org/10.1109/icccmla58983.2023.10346873

Arce, D., Pérez-Zuñiga, G., Flores, E., Cuellar, F., & Jimenez, V. (2023). Design and Implementation of Automatic Palletizing System with Vision Based Algorithms for Quality Control. 2023 5th International Conference on Robotics and Computer Vision (ICRCV), 271–277. https://doi.org/10.1109/icrcv59470.2023.10329106

Yu, H., Møller, V. K., Frandsen, R. J. N., & Mansourvar, M. (2023). Image processing for robotic control in life science laboratory automation. 2023 5th International Conference on Robotics and Computer Vision (ICRCV), 305–309. https://doi.org/10.1109/icrcv59470.2023.10329251

Borkar, S., Ghutke, P., Patil, W., Joshi, S., & Sorte, S. (2023). A review of pick and place robots for the pharmaceutical industry. 2023 11th International Conference on Emerging Trends in Engineering & Technology - Signal and Information Processing (ICETET - SIP), 1–6. https://doi.org/10.1109/icetet-sip58143.2023.10151652

Stasevych, M., & Zvarych, V. (2023). Innovative robotic Technologies and Artificial intelligence in Pharmacy and Medicine: Paving the Way for the Future of Health Care—A review. Big Data and Cognitive Computing, 7(3), 147. https://doi.org/10.3390/bdcc7030147

Thieme, A., Renwick, S., Marschmann, M., Guimaraes, P. I., Weissenborn, S., & Clifton, J. (2024). Deep integration of low-cost liquid handling robots in an industrial pharmaceutical development environment. SLAS Technology, 29(5), 100180. https://doi.org/10.1016/j.slast.2024.100180

Klymenko, O. (2024). Research on the application of dynamic programming algorithm for load balancing on conveyor lines in the pharmaceutical industry. Débats scientifiques et orientations prospectives du développement scientifique, 184–186. https://doi.org/10.36074/logos-01.03.2024.041

Bao, K., Yoon, J. S., Ahn, S., Lee, J. H., Cross, C. J., Jeong, M. Y., Frangioni, J. V., & Choi, H. S. (2024). A robotic system for automated chemical synthesis of therapeutic agents. Materials Advances, 5(12), 5290–5297. https://doi.org/10.1039/d4ma00099d

Tang, R., Guo, S., Qiu, Y., Chen, H., Huang, L., Yong, M., Zhou, L., & Guo, L. (2024). Optimizing Drug delivery in smart pharmacies: a novel framework of Multi-Stage grasping network combined with adaptive robotics mechanism. arXiv (Cornell University), 1–13. https://doi.org/10.48550/arxiv.2410.00753

Slattery, A., Wen, Z., Tenblad, P., Sanjosé-Orduna, J., Pintossi, D., Hartog, T. D., & Noël, T. (2024). Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science, 383(6681). https://doi.org/10.1126/science.adj1817

Topelius, N. S., Shokraneh, F., Bahman, M., Lahtinen, J., Hassinen, N., Airaksinen, S., Verma, S., Hrizanovska, L., Lass, J., Paaver, U., Tähnas, J., Kern, C., Lagarce, F., Fenske, D., Malik, J., Scherliess, H., Cruz, S. P., Paulsson, M., Dekker, J., Kammonen, K., Rautamo, M., Lück, H., Pierrot, A., Stareprawo, S., Tubic-Grozdanis, M., Zibolka, S., Lösch, U., Jeske, M., Griesser, U., Hummer, K., Thalmeier, A., Harjans, A., Kruse, A., Heimke-Brinck, R., Khoukh, K., & Bruno, F. (2024). Automated Non-Sterile Pharmacy Compounding: A Multi-Site Study in European Hospital and Community Pharmacies with Pediatric Immediate Release Propranolol Hydrochloride Tablets. Pharmaceutics, 16(5), 678. https://doi.org/10.3390/pharmaceutics16050678

Fang, B., Guo, X., Wang, Z., Li, Y., Elhoseny, M., & Yuan, X. (2019). Collaborative task assignment of interconnected, affective robots towards autonomous healthcare assistant. Future Generation Computer Systems, 92, 241–251. https://doi.org/10.1016/j.future.2018.09.069

Bauer, J., Hoq, M. N., Mulcahy, J., Tofail, S. A. M., Gulshan, F., Silien, C., Podbielska, H., & Akbar, M. M. (2020). Implementation of artificial intelligence and non-contact infrared thermography for prediction and personalized automatic identification of different stages of cellulite. The EPMA Journal, 11, 17–29. https://doi.org/10.1007/s13167-020-00199-x

Ghita, M., Neckebroek, M., Muresan, C., & Copot, D. (2020). Closed-Loop Control of Anesthesia: Survey on actual trends, challenges and perspectives. IEEE Access, 8, 206264–206279. https://doi.org/10.1109/access.2020.3037725

De La Vega, F. M., Chowdhury, S., Moore, B., Frise, E., McCarthy, J., Hernandez, E. J., Wong, T., James, K., Guidugli, L., Agrawal, P. B., Genetti, C. A., Brownstein, C. A., Beggs, A. H., Löscher, B. -S., Franke, A., Boone, B., Levy, S. E., Õunap, K., Pajusalu, S., Huentelman, M., Ramsey, K., Naymik, M., Narayanan, V., Veeraraghavan, N., Billings, P., Reese, M. G., Yandell, M., & Kingsmore, S. F. (2021). Artificial intelligence enables comprehensive genome interpretation and nomination of candidate diagnoses for rare genetic diseases. Genome Medicine, 13, 153. https://doi.org/10.1186/s13073-021-00965-0

Tsopra, R., Fernandez, X., Luchinat, C., Alberghina, L., Lehrach, H., Vanoni, M., Dreher, F., Sezerman, O., Cuggia, M., De Tayrac, M., Miklasevics, E., Itu, L. M., Geanta, M., Ogilvie, L., Godey, F., Boldisor, C. N., Campillo-Gimenez, B., Cioroboiu, C., Ciusdel, C. F., Coman, S., Cubelos, O. H., Itu, A., Lange, B., Gallo, M. L., Lespagnol, A., Mauri, G., Soykam, H., Rance, B., Turano, P., Tenori, L., Vignoli, A., Wierling, C., Benhabiles, N., & Burgun, A. (2021). A framework for validating AI in precision medicine: considerations from the European ITFoC consortium. BMC Medical Informatics and Decision Making, 21, 274. https://doi.org/10.1186/s12911-021-01634-3

Gasteiger, N., & Broadbent, E. (2021). AI, robotics, medicine and health sciences. In The Routledge Social Science Handbook of AI (1st ed., pp. 313–338). Routledge. https://doi.org/10.4324/9780429198533-22

Kumar, P. P., Kumar, T. A., Rajmohan, R., & Pavithra, M. (2022). AI-Based robotics in E-Healthcare applications. In Intelligent Interactive Multimedia Systems for e-Healthcare Applications (1st ed., pp. 249–269). Apple Academic Press. https://doi.org/10.1201/9781003282112-15

Sorrentino, A., Fiorini, L., Mancioppi, G., Cavallo, F., Umbrico, A., Cesta, A., & Orlandini, A. (2022). Personalizing care through robotic assistance and clinical supervision. Frontiers in Robotics and AI, 9, 883814. https://doi.org/10.3389/frobt.2022.883814

Jain, G., & Jain, A. (2022). Applications of AI, IoT, and robotics in healthcare service based on several aspects. In Blockchain Technology in Healthcare Applications (1st ed., pp. 87–114). CRC Press. https://doi.org/10.1201/9781003224075-5

Costa, T., Coelho, L., & Silva, M. S. (2022). Integrating computer vision, robotics, and artificial intelligence for healthcare. In Non INESC TEC publications (pp. 134–162). INESC TEC Documental Repository. https://repositorio.inesctec.pt/handle/123456789/13916

Ahmad, S. S., Meehan, A., Crispin-Ortuzar, M., & Weckman, N. E. (2023). Personalized, connected health enabled by AI and home-based diagnostics. Trends in Biotechnology, 41(7), 982–983. https://doi.org/10.1016/j.tibtech.2023.03.013

Edmonds, J. K. (2023). Use of artificial intelligence to improve women’s health and enhance nursing care. JOGN Nursing, 52(3), 169–171. https://doi.org/10.1016/j.jogn.2023.03.004

Kumar, P., Chauhan, S., & Awasthi, L. K. (2023). Artificial Intelligence in Healthcare: Review, Ethics, Trust Challenges & Future Research Directions. Engineering Applications of Artificial Intelligence, 120, 105894. https://doi.org/10.1016/j.engappai.2023.105894

D’Silva, B., & Gatti, R. R. (2023). Applications of AI-enabled robotics in healthcare. In Bentham Science Publishers (pp. 248–261). https://doi.org/10.2174/9789815196054123050018

Vardhanabhuti, V., Kwok, K.-W., Chan, J. Y. K., & Dou, Q. (2023). Machine learning, medical AI and robotics: Translating theory into the clinic. IOP Publishing. https://doi.org/10.1088/978-0-7503-4637-5

De Micco, F., Grassi, S., Tomassini, L., Di Palma, G., Ricchezze, G., & Scendoni, R. (2024). Robotics and AI into healthcare From the perspective of European regulation: Who is responsible for medical malpractice? Frontiers in Medicine, 11, 1428504. https://doi.org/10.3389/fmed.2024.1428504

Trezza, A., Visibelli, A., Roncaglia, B., Spiga, O., & Santucci, A. (2024). Unsupervised Learning in Precision Medicine: Unlocking Personalized Healthcare through AI. Applied Sciences, 14(20), 9305. https://doi.org/10.3390/app14209305

Gupta, N., & Jha, R. (2024). Artificial intelligence (AI) in medical robotics. In Advances in Artificial Intelligence: Biomedical Engineering Applications in Signals and Imaging (pp. 141–167). Academic Press. https://doi.org/10.1016/b978-0-443-19073-5.00006-9

Shafik, W., Tufail, A., De Silva Liyanage, C., & Apong, R. A. A. H. M. (2024). Medical robotics and AI-Assisted diagnostics challenges for smart sustainable healthcare. In A. Khang (Ed.), AI-Driven Innovations in Digital Healthcare: Emerging Trends, Challenges, and Applications (pp. 304–323). IGI Global. https://doi.org/10.4018/979-8-3693-3218-4.ch016

Sudha, K., Balakrishnan, C., Varun, C. M., & Subramanian, R. S. (2024). Advancements in medical robotics and AI-Assisted diagnostics. In A. Khang (Ed.), AI-Driven Innovations in Digital Healthcare: Emerging Trends, Challenges, and Applications (pp. 23–46). IGI Global. https://doi.org/10.4018/979-8-3693-3218-4.ch002

Maglogiannis, I., Trastelis, F., Kalogeropoulos, M., Khan, A., Gallos, P., Menychtas, A., Panagopoulos, C., Papachristou, P., Islam, N., Wolff, A., Soares, S., Hansen, S., & Scholze, S. (2024). AI4Work Project: Human-Centric Digital Twin approaches to trustworthy AI and robotics for improved working conditions in healthcare and education sectors. In Studies in health technology and informatics (Vol. 316, pp. 1013–1017). IOS Press Ebooks. https://doi.org/10.3233/shti240581

Mirakhori, F., & Niazi, S. K. (2025). Harnessing the AI/ML in Drug and Biological Products Discovery and Development: the Regulatory Perspective. Pharmaceuticals, 18(1), 47. https://doi.org/10.3390/ph18010047

Aundhia, C., Parmar, G., Talele, C., Shah, N., & Talele, D. (2024). Impact of artificial intelligence on drug development and delivery. Current Topics in Medicinal Chemistry, 24, e15680266324522. https://doi.org/10.2174/0115680266324522240725053634

Rao, G. N., Gunasundari, C., Babu, S. B. G. T., G, P., Dwivedi, V. K., & Shaik, B. (2024). AI-Driven Drug Discovery: Computational methods and applications. 2024 5th International Conference on Recent Trends in Computer Science and Technology (ICRTCST), 46–50. https://doi.org/10.1109/icrtcst61793.2024.10578434

Kang, H. S. (2024). AI and Pharma: Transforming the paradigm, embracing the new era. Artificial Intelligence in Health, 1(3), 1–9. https://doi.org/10.36922/aih.2973

Statistics
94 Views | Downloads
Dimension Citations

Published

27-04-2025

How to Cite

Parankush Koul, and Dr. Indu B. Koul. “APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND ROBOTICS IN PHARMACEUTICAL SCIENCES: ADVANCING DRUG DISCOVERY, PERSONALIZED MEDICINE, AND PHARMACEUTICAL MANUFACTURING”. Tropical Journal of Pharmaceutical and Life Sciences, vol. 12, no. 2, Apr. 2025, doi:10.61280/tjpls.v12i2.169.

Issue

Section

Review Article